

XLISP 2.0 OBJECTS PRIMER

by

Tim I Mikkelsen

February 3, 1990

 Copyright (c) 1990 by Tim I. Mikkelsen. All Rights Reserved.
 No part of this document may be copied, reproduced or translated
 for commercial use without prior written consent of the author.
 Permission is granted for non-commercial use as long as this
 notice is left intact.

 __

 One of the features in the design of XLISP is object-oriented
 programming. This primer is intended to serve as a very brief
 introduction to the object facilities of the XLISP 2.0 dialect
 of LISP. Note that the object features of XLISP are not based
 on other existing object definitions in other LISP dialects. If
 you find problems in the primer, I'd appreciate hearing.

 Tim Mikkelsen
 4316 Picadilly Drive
 Fort Collins, Colorado 80526

PROGRAMMING STYLES
__

There are many programming paradigms (models). Some of the paradigms
are procedural, functional, rule-based, declarative and object-oriented.
A language can have aspects of one or many of these programming models.

Procedure-Oriented

The programming paradigm most people are familiar with is the procedural
style. The primitives in procedural programming are: subroutines and
data structures. Through these primitives, programmers have some
limited abilities to share programs and program fragments. C and Pascal
are examples of procedural languages. Some procedural languages (such
as Modula and ADA) have extensions that provide for better sharing of
code.

Object-Oriented Programming

Object-oriented programming is based on the primitives of objects,
classes and messages. Objects are defined in terms of classes. Actions
occur by sending a message to an object. An object's definition can be
inherited from more general classes. Objective-C and C++ both are
object-oriented dialects of the C language. Many dialects of LISP have
some object oriented extension (Flavors, Common LOOPS, CLOS and others).
There currently is standards work proceeding to add object-oriented
programming to Common LISP.

Object Oriented Programming

So, the object-oriented programming model is based around the concepts
of objects, classes and messages. An object is essentially a black box
that contains internal state information. You send an object a message
which causes the object to perform some operation. Objects are defined
and described through classes.

One aspect of an object is that you do not have to know what is inside -
or how it works - to be able to use it. From a programming point of
view, this is very handy. You can develop a series of objects for
someone to use. If you need to change what goes on inside, the users of
the objects should be unaware.

Another aspect of objects is that of inheritance. You can build up new
classes from existing classes by inheriting the existing class's
functionality and then extending the new definition. For example, you
can define a tool class (with various attributes) and then go about
creating object instances tool-1, tool-2, and so on. You can also
create new sub-classes of the tool class like power-tool. This is also
very handy because you don't have to re-implement something if you can

build it up from existing code.

XLISP OBJECT-ORIENTED PROGRAMMING
__

XLISP OBJECT TERMINOLOGY

There are, as previously mentioned, many different languages with
object-oriented extensions and facilities. The terminology, operations
and styles of these are very different. Some of the main definitions
for XLISP's object-oriented extensions are:

 Object data type The OBJECT DATA TYPE is a built-in data
 type of XLISP. Members of the object
 data type are object instances and
 classes.

 Object instances An OBJECT INSTANCE is a composite
 structure that contains internal state
 information, methods (the code which
 respond to messages), a pointer to the
 object instance's defining class and a
 pointer to the object's super-class.
 XLISP contains no built-in object
 instances.

 Class objects A CLASS OBJECT is, essentially, the
 template for defining the derived object
 instances. A class object, although
 used differently from a simple object
 instance, is structurally a member of
 the object data type. It is also
 contains the linking mechanism that
 allows you to build class hierarchies
 (sub-classes and super-classes). XLISP
 contains two built-in class objects:
 OBJECT and CLASS.

 Message selector The MESSAGE SELECTOR is the symbol that
 is used to select a particular action
 (Method) from the object.

 Message The MESSAGE is the combination of the
 message selector and the data (if any)
 to be sent to the object.

 Method The METHOD is the actual code that gets
 executed when the object receives the
 Message.

SENDING MESSAGES

The mechanism for sending messages to XLISP objects is via the SEND
function. It takes an object, a message selector and various optional
arguments (depending on the message selector).

The way that a user creates a new object is to send a :NEW message to a
previously defined class. The result of this SEND will return an
object, so this is normally preceded by a SETQ. The values shown in the
examples that follow may not match what you see if you try this on your
version of XLISP - this is not an error. The screens that are used in
the various examples are similar to what you should see on your computer
screen. The ">" is the normal XLISP prompt (the characters that follow
the prompt is what you should type in to try these examples).

 __
 |
 | > (setq my-object (send object :new))
 | #<Object: #2e100>
 |__

The object created here is of limited value. Most often, you create a
class object and then you create instances of that class. So in the
following example, a class called MY-CLASS is created that inherits its
definition from the a built-in CLASS definition. Then two instances are
created of the new class.

 __
 |
 | > (setq my-class (send class :new '()))
 | #<Object: #27756>
 |
 | > (setq my-instance (send my-class :new))
 | #<Object: #27652>
 |
 | > (setq another-instance (send my-class :new))
 |#<Object: #275da>
 |__

CLASSES

Previously, a :NEW message was used to create an object. The message
used to see what is in an object is the :SHOW message.

 __
 |
 | > (send my-class :show)
 | Object is #<Object: #27756>, Class is #<Object: #23fe2>
 | MESSAGES = NIL
 | IVARS = NIL
 | CVARS = NIL
 | CVALS = NIL

 | SUPERCLASS = #<Object: #23fd8>
 | IVARCNT = 0
 | IVARTOTAL = 0
 | #<Object: #27756>
 |__

From the display of the MY-CLASS object you can see there are a variety
of components. The components of a class are:

 Class Pointer This pointer shows to what class the
 object (instance or class) belongs. For
 a class, this always points to the
 built-in object CLASS. This is also
 true of the CLASS object, its class
 pointer points to itself.

 Superclass Pointer This pointer shows what the next class
 up the class hierarchy is. If the user
 does not specify what class is the
 superclass, it will point to the
 built-in class OBJECT.

 Messages This component shows what messages are
 allowed for the class, and the
 description of the method that will be
 used. If the method is system-defined,
 it will show up in the form of '#<Subr-:
 #18b98>'. Remember that the class
 hierarchy (through the Superclass
 Pointer) is searched if the requested
 message is not found in the class.

 Instance Variables This component lists what instance
 variables will be created when an object
 instance is created. If no instances of
 the class exist, there are no Instance
 Variables. If there are 5 instances of
 a class, there are 5 complete and
 different groups of the Instance
 Variables.

 Class Variables The CLASS VARIABLES (CVAR) component
 and Values lists what class variables exist within
 the class. The Class Values (CVAL)
 component shows what the current values
 of the variables are. Class Variables
 are used to hold state information about
 a class. There will be |Bone of each|A
 of the Class Variables, independent of
 the number of instances of the class
 created.

A BETTER EXAMPLE

The example previously shown does work, but the class and instances
created don't really do anything of interest. The following example
sets up a tool class and creates some tool instances.

 __
 |
 | > (setq my-tools (send class :new '(power moveable operation)))
 | #<Object: #277a6>
 |
 | > (send my-tools :answer :isnew '(pow mov op)
 | '((setq power pow)
 | (setq moveable mov)
 | (setq operation op)))
 | #<Object: #277a6>
 |
 | > (setq drill (send my-tools :new 'AC t 'holes))
 | #<Object: #2ddbc>
 |
 | > (setq hand-saw (send my-tools :new 'none t 'cuts))
 | #<Object: #2dc40>
 |
 | > (setq table-saw (send my-tools :new 'AC nil 'cuts))
 | #<Object: #2db00>
 |__

So, a class of objects called MY-TOOLS was created. Note that the class
object MY-TOOLS was created by sending the :NEW message to the built-in
CLASS object. Within the MY-TOOL class, there are three instances
called DRILL, HAND-SAW and TABLE-SAW. These were created by sending the
:NEW message to the MY-TOOLS class object. Notice that the parameters
followed the message selector.

INSTANCES

The following is a display of the contents of some of the previously
created instances:

 __
 |
 | > (send drill :show)
 | Object is #<Object: #2ddbc>, Class is #<Object: #277a6>
 | POWER = AC
 | MOVEABLE = T
 | OPERATION = HOLES
 | #<Object: #2ddbc>
 |
 | > (send hand-saw :show)
 | Object is #<Object: #2dc40>, Class is #<Object: #277a6>
 | POWER = NONE
 | MOVEABLE = T
 | OPERATION = CUTS
 | #<Object: #2dc40>
 |__

From the display of these instances you can see there are some
components and values. The components of an instance are:

 Class Pointer This pointer shows to which class the
 current object instance belongs. It is
 through this link that the system finds
 the methods to execute for the received
 messages.

 Instance Variables The Instance Variables (IVAR) component
 and Values lists what variables exist within the
 instance. The Instance Values component
 holds what the current values of the
 variables are. Instance Variables are
 used to hold state information for each
 instance. There will be a group of
 Instance Variables for each instance.

METHODS

There have been a few of the messages and methods in XLISP shown to this
point (:NEW and :SHOW). The following are the methods built into XLISP:

 :ANSWER The :ANSWER method allows you to define or
 change methods within a class.

 :CLASS The :CLASS method returns the class of an object.

 :ISNEW The :ISNEW method causes an instance to run its
 initialization code. When the :ISNEW method is
 run on a class, it resets the class state. This
 allows you to re-define instance variables,
 class variables, etc.

 :NEW The :NEW method allows you to create an instance
 when the :NEW message is sent to a user-defined
 class. The :NEW method allows you to create a
 new class (when the :NEW message is sent to the
 built-in CLASS).

 :SHOW The :SHOW method displays the instance or class.

SENDING MESSAGES TO A SUPERCLASS

In addition to the SEND function, there is another function called
SEND-SUPER. The SEND-SUPER function causes the specified message to be
performed by the superclass method. This is a mechanism to allow
chaining of methods in a class hierarchy. This chaining behavior can be

achieved by creating a method for a class with the :ANSWER message.
Within the body of the method, you include a SEND-SUPER form. This
function is allowed only inside the execution of a method of an object.

OBJECT AND CLASS

The definition of the built-in class OBJECT is:

 __
 |
 | > (send object :show)
 | Object is #<Object: #23fd8>, Class is #<Object: #23fe2>
 | MESSAGES = ((:SHOW . #<Subr-: #23db2>)
 | (:CLASS . #<Subr-: #23dee>)
 | (:ISNEW . #<Subr-: #23e2a>))
 | IVARS = NIL
 | CVARS = NIL
 | CVALS = NIL
 | SUPERCLASS = NIL
 | IVARCNT = 0
 | IVARTOTAL = 0
 | #<Object: #23fd8>
 |__

Note that OBJECT is a class - as opposed to an "instance-style" object.
OBJECT has no superclass, it is the top or root of the class hierarchy.
OBJECT's class is CLASS.

 __
 |
 | > (send class :show)
 | Object is #<Object: #23fe2>, Class is #<Object: #23fe2>
 | MESSAGES = ((:ANSWER . #<Subr-: #23e48>)
 | (:ISNEW . #<Subr-: #23e84>)
 | (:NEW . #<Subr-: #23ea2>))
 | IVARS = (MESSAGES IVARS CVARS CVALS SUPERCLASS
 | IVARCNT IVARTOTAL)
 | CVARS = NIL
 | CVALS = NIL
 | SUPERCLASS = #<Object: #23fd8>
 | IVARCNT = 7
 | IVARTOTAL = 7
 | #<Object: #23fe2>
 |__

CLASS has a superclass of OBJECT. It's class is itself - CLASS.

A MORE REALISTIC EXAMPLE
__

The following is an example, using the idea of tools again. It contains
a hierarchy of tool classes. The top of the class hierarchy is TOOLS.
HAND-TOOLS and SHOP-TOOLS are sub-classes of TOOLS. The example creates
instances of these sub-classes. It is possible to extend this example
in various ways. One obvious extension would be to create a third tier
of classes under HAND-TOOLS that could contain classes like drills,
screwdrivers, pliers and so on.

;;
;
; File name: tools.lsp
; Author: Tim Mikkelsen
; Description: Object-oriented example program
; Language: XLISP 2.0
;
; Date Created: 10-Jan-1988
; Date Updated: 2-Apr-1989
;
; (c) Copyright 1988, by Tim Mikkelsen, all rights reserved.
; Permission is granted for unrestricted non-commercial use.
;
;;

;;
;
; Define the superclasses and classes
;
;;

;
; make TOOLS superclass
; with a different :ISNEW method
; added methods are :BORROW and :RETURN
; class variables are NUMBER contains # of tool instances
; ACTIVE-LIST contains list of current objects
; instance variables are POWER list - (AC BATTERY HAND)
; MOVEABLE CAN-CARRY or CAN-ROLL or FIXED
; OPERATIONS list
; MATERIAL list - (WOOD METAL PLASTIC ...)
; PIECES list
; LOCATION HOME or person's name
;

(setq tools (send class :new '(power
 moveable
 operations

 material
 pieces
 location)
 '(number active-list)))
(send tools :answer :isnew '()
 '((if (null number) (setq number 1)
 (setq number (1+ number)))
 (setq active-list (cons self active-list))
 (setq location 'home)))
(send tools :answer :borrow '(by-who)
 '((if (eq location 'home) (setq location by-who)
 (print "you can't"))))
(send tools :answer :return '()
 '((if (eq location 'home) (print "got it already")
 (setq location 'home))))

;
; make HAND-TOOLS class
; with a different :ISNEW method
; new instance variable WEIGHT <number> of pounds
; the rest is inherited from TOOLS
;

(setq hand-tools (send class :new '(weight) '() tools))
(send hand-tools :answer :isnew '(pow op mat parts w-in)
 '((setq power pow)
 (setq moveable 'can-carry)
 (setq operations op)
 (setq material mat)
 (setq pieces parts)
 (setq weight w-in)
 (send-super :isnew)))

;
; make SHOP-TOOLS class
; with a different :ISNEW method
; no new instance variables
; the rest is inherited from TOOLS
;

(setq shop-tools (send class :new '() '() tools))
(send shop-tools :answer :isnew '(pow mov op mat parts)
 '((setq power pow)
 (setq moveable mov)
 (setq operations op)
 (setq material mat)
 (setq pieces parts)
 (send-super :isnew)))

;;
;
; Create instances of various tool classes
;
;;

(setq hand-drill (send hand-tools :new ; make an instance - HAND-DRILL
 '(ac)
 '(drill polish grind screw)
 '(wood metal plastic)
 '(drill drill-bits screw-bits buffer)
 '2.5))

(setq table-saw (send shop-tools :new ; make an instance - TABLE-SAW
 '(ac)
 'fixed
 '(rip cross-cut)
 '(wood plastic)
 '(saw blades fence)))

(setq radial-arm (send shop-tools :new ; make an instance = RADIAL-ARM
 '(ac)
 'can-roll
 '(rip cross-cut)
 '(wood plastic)
 '(saw blades dust-bag)))

The following session shows how to use the tool definitions from this
better example. The example starts at the OS shell and brings up xlisp
running the file 'tools.lsp'.

 __
 |
 | cmd? xlisp tools
 | ; loading "init.lsp"
 | ; loading "tools.lsp"
 | > (send hand-drill :borrow 'fred)
 | FRED
 |
 | > (send table-saw :return)
 | "got it already"
 | "got it already"
 |
 | > (send hand-drill :borrow 'joe)
 | "you can't"
 | "you can't"
 |
 | > (send hand-drill :return)
 | HOME
 |__

So, Fred was able to borrow the HAND-DRILL. When an attempt was made to
return the TABLE-SAW, it was already at home. A second attempt to
borrow the HAND-DRILL indicated that "you can't" because it was already
lent out. Lastly, the HAND-DRILL was returned successfully. (Note that
the "got it already" and "you can't" strings show up twice in the
display because the methods both print and return the string.)

The following session shows the structure of the TOOLS object:

 __
 |
 | > (send tools :show)
 | Object is #<Object: #276fc>, Class is #<Object: #23fe2>
 | MESSAGES = ((:RETURN . #<Closure-:RETURN: #2dbd0>)
 | (:BORROW . #<Closure-:BORROW: #2ddba>)
 | (:ISNEW . #<Closure-:ISNEW: #274a4>))
 | IVARS = (POWER MOVEABLE OPERATIONS MATERIAL PIECES LOCATION)
 | CVARS = (NUMBER ACTIVE-LIST)
 | CVALS = #(3 (#<Object: #2cadc>
 | #<Object: #2cda2>
 | #<Object: #2d0e0>))
 | SUPERCLASS = #<Object: #23fd8>
 | IVARCNT = 6
 | IVARTOTAL = 6
 | #<Object: #276fc>
 |__

The two TOOLS sub-classes HAND-TOOLS and SHOP-TOOLS structure looks like:

 __
 |
 | > (send hand-tools :show)
 | Object is #<Object: #2dab8>, Class is #<Object: #23fe2>
 | MESSAGES = ((:ISNEW . #<Closure-:ISNEW: #2d7a2>))
 | IVARS = (WEIGHT)
 | CVARS = NIL
 | CVALS = NIL
 | SUPERCLASS = #<Object: #276fc>
 | IVARCNT = 1
 | IVARTOTAL = 7
 | #<Object: #2dab8>
 |
 | > (send shop-tools :show)
 | Object is #<Object: #2d680>, Class is #<Object: #23fe2>
 | MESSAGES = ((:ISNEW . #<Closure-:ISNEW: #2d450>))
 | IVARS = NIL
 | CVARS = NIL
 | CVALS = NIL
 | SUPERCLASS = #<Object: #276fc>
 | IVARCNT = 0
 | IVARTOTAL = 6
 | #<Object: #2d680>
 |__

The class HAND-TOOLS has an instance HAND-DRILL which looks like:

 __
 |
 | > (send hand-drill :show)
 | Object is #<Object: #2d0e0>, Class is #<Object: #2dab8>
 | WEIGHT = 2.5
 | POWER = (AC)
 | MOVEABLE = CAN-CARRY
 | OPERATIONS = (DRILL POLISH GRIND SCREW)
 | MATERIAL = (WOOD METAL PLASTIC)
 | PIECES = (DRILL DRILL-BITS SCREW-BITS BUFFER)
 | LOCATION = HOME
 | #<Object: #2d0e0>
 |__

